691 research outputs found

    The Baikal Neutrino Telescope: Status and plans

    Full text link
    The high energy neutrino telescope NT200+ is currently in operation in Lake Baikal. We review the status of the Baikal the Baikal Neutrino Telescope, and describe recent progress on key components of the next generation kilometer-cube (km3) Lake Baikal detector, like investigation of new large area phototubes, integrated into the telescope.Comment: 4 pages, 4 figures, presented at the 30th ICRC, Merida, Mexico, July 200

    Scaling the Temperature-dependent Boson Peak of Vitreous Silica with the high-frequency Bulk Modulus derived from Brillouin Scattering Data

    Get PDF
    The position and strength of the boson peak in silica glass vary considerably with temperature TT. Such variations cannot be explained solely with changes in the Debye energy. New Brillouin scattering measurements are presented which allow determining the TT-dependence of unrelaxed acoustic velocities. Using a velocity based on the bulk modulus, scaling exponents are found which agree with the soft-potential model. The unrelaxed bulk modulus thus appears to be a good measure for the structural evolution of silica with TT and to set the energy scale for the soft potentials.Comment: Accepted for publication in Physical Review Letter

    Dynamic rotor mode in antiferromagnetic nanoparticles

    Get PDF
    We present experimental, numerical, and theoretical evidence for a new mode of antiferromagnetic dynamics in nanoparticles. Elastic neutron scattering experiments on 8 nm particles of hematite display a loss of diffraction intensity with temperature, the intensity vanishing around 150 K. However, the signal from inelastic neutron scattering remains above that temperature, indicating a magnetic system in constant motion. In addition, the precession frequency of the inelastic magnetic signal shows an increase above 100 K. Numerical Langevin simulations of spin dynamics reproduce all measured neutron data and reveal that thermally activated spin canting gives rise to a new type of coherent magnetic precession mode. This "rotor" mode can be seen as a high-temperature version of superparamagnetism and is driven by exchange interactions between the two magnetic sublattices. The frequency of the rotor mode behaves in fair agreement with a simple analytical model, based on a high temperature approximation of the generally accepted Hamiltonian of the system. The extracted model parameters, as the magnetic interaction and the axial anisotropy, are in excellent agreement with results from Mossbauer spectroscopy

    Fragility and compressibility at the glass transition

    Get PDF
    Isothermal compressibilities and Brillouin sound velocities from the literature allow to separate the compressibility at the glass transition into a high-frequency vibrational and a low-frequency relaxational part. Their ratio shows the linear fragility relation discovered by x-ray Brillouin scattering [1], though the data bend away from the line at higher fragilities. Using the concept of constrained degrees of freedom, one can show that the vibrational part follows the fragility-independent Lindemann criterion; the fragility dependence seems to stem from the relaxational part. The physical meaning of this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco, Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after refereein
    corecore